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Stress tensor of liquid-vapor states of inhomogeneous fluids
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The theory of the stress tensor of nonuniform fluids by means of density functional theory is reviewed. We
present a general, symmetric, stress tensor valid for any free energy density functional with translational and
rotational invariance. We specialize to the nonlocal van der Waals free energy density functional of a simple
fluid and study inhomogeneous liquid-vapor coexistence states, separated by either a planar or a spherical
interface. It is shown that the stress tensor contains all the information regarding the mechanical equilibrium of
the state of the system. On the one hand, it leads to the expected expressions and relationships of the interfacial
guantities and, on the other, it allows for a correct separation of the bulk and interfacial contributions to the free
energy.[S1063-651X%96)07305-9

PACS numbeps): 05.70.Fh, 05.20:y, 82.65.Dp

[. INTRODUCTION tion of the free energy. We shall examine the case in which
a planar interface is present and the case of a spherical drop
The description of the liquid-vapor coexistence states i®f liquid in coexistence with its vapor.

one of the central problems of the study of nonuniform fluids But before we enter into the discussion of the stress tensor
[1-4]. Among the difficulties that one faces is the appropri-Within density functional theory, we shall discuss some ther-
ate separation of contributions of the free energy arisingnodynamics of the liquid-vapor states. This is important
from the bulk and the interface between the two phases; thigince thermodynamic and mechanical arguments are very
is particulary important when the description is attempted afléar as to how different terms contribute to the free energy,
a microscopic level. Related to this issue is the elucidation ofvhile the path from the microscopic point of view of statis-
the corresponding stress, or pressure, tensor of the fluid. Th§fal mechanics is not always unambiguous. Thus we shall
is, since the density of the fluid is inhomogeneous, it is ndirst state what we are trying to achieve. . _
longer true that the pressure is uniform and isotropic every- Working in the grand canonical ensemble is particularly
where. This lack of uniformity and isotropy is, in fact, re- Simple for our purposes. Namely, for a homogeneous system,
sponsible for the surface tension that develops between thé€ know that the grand potenti&l(V,,T), a function of
liquid and vapor phases, and thus, the importance of studyinf'€ volume, temperature and chemical potential, is given by
the stress or pressure tensor of these states. There have been _
many important attempts in obtaining general expressions for OV, T)==p(p.T)V, 1D

the stress tensor and in relating these to measurable q”ar\ﬁi/herep(# T) is the thermodynamic pressure
tites such as the surface tensic6]. As is known, one of When a system finds itself in a coexistence liquid-vapor

the most uncomfortable properties of such a tensor is that tiate separated by a planar interface, we expect from general

appears not to be unique, n th.e. sgl(\see below that the considerations of thermodynamics that the grand potential
condition for mechanical equilibrium leaves a sort of ;po14 now be written as

“gauge” freedom in the determination of the stress tensor;

that is, the condition of the balance of forces is a statement Q=—-pV+1S, (1.2)

about thedivergenceof the tensor and thus, it seems, one is

free to add to the stress tensor, the curl of another tensatvherey is surface tension of the interface aits area. The

without altering the equilibrium condition. pressure is no longer isotropic and, indeed, the surface ten-
In this article we present a very general representation o§ion is mechanically related to the difference of stresses as

the stress tensor within density functional theory that only[2]

requires translational and rotational invariance of the free

energy density. A similar expression was already shown by TN

one of the author§6] but it was not symmetric. We also 72] dz(o'—0o7),

review the argument previously showi] that, once the

stress tensor is known, one can express the free energy Where o™ and o' are the components of the stress tensor

terms of its bulk and interfacial contributions. Then, special-normal andtangentialto the interfacial surface is the co-

izing to the nonlocal van der Waals model for the free energyrdinate normal to the interface. The pressure that appears in

density functional we explicitly verify and illustrate that the Eq. (1.2) is equal to(minug the normal stressp=—o",

stress tensor has the correct mechanical properties of thmnstant everywhere and equal to the pressure of the “Max-

fluid, and this indeed leads to the above-mentioned separavell equal areas” constructiof8].

1.3
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When the state corresponds to a drogsafy liquid in its  given by u in Eg. (2.1). Therefore the equilibrium state and

vapor, the grand potential is now the actual value of the grand potent@[ p(r)] at equilib-
rium is found by minimizing (actually extremizing
Q=-pV,=p,(V-V))+75, (1.4 Q[p(r)], that is, by solving the Euler-Lagrange equation

wherep, and p, are the pressures of the liquid and vapor
phases, respectively, is the volume of the drop an8 its
area. By the Young-Laplace equation the pressures and the op(r) oo
surface tension are related as

== Vex(r). 2.3

The functionpg(r) is the equilibrium density profile for the
_ :21 1 given values off andu. But the Euler-Lagrange equatias
PI—Py ’ ( 5) - . e .
R also the condition for mechanical equilibrium: namely, by

) , ) . multiplying Eq. (2.3) by the gradient of the equilibrium den-
where R is the radius of the drop. Again, the pressure ISsity, Vpo(r), we obtain

equal to(minug the component of the stress tensor normal to
the interface. SF

The previous results are all based on general aspects gF—— | Vpo(r)—V{[x— VeI 1po(r)}
thermodynamics and mechanical equilibrium and do not in—5p(r) Po
volve any microscopic details of statistical mechanics. It
should be clear that if an account is taken of the microscopic =po(r)VVex(r). (2.4
nature of the fluid particles, the above expressions may only
be approximate in the sense that there may not be a clear cgnce the right-hand side of this equation(iisinug the ex-
separation of “bulk” and “surface” because the interfacial ternal force per unit of volume acting on the fluid, the left-
region actually occupies volume. hand side can be identified as the divergence of the stress

For our purposes, we point out that complete thermodytensor in its equilibrium state. That is, EQ.4) corresponds
namic equilibrium in a system requires thermal equilibrium¢g

(same temperature everywhgrehemical equilibrium(for a

one-species fluid, same chemical potential everywhanel V- 5(1)=po(r)VVeyr). (2.5
mechanical equilibrium. For homogeneous systems, the lat-

ter translates into equaisotropio pressure everywhere, but g \ye discuss below one can find very general expres-
for an inhomogeneous fluid, the corresponding mechanicalions for a symmetric stress tensor satisfying the balance
equilibrium condition is now the equation of balance of ¢;,ce equation(2.5). But before presenting such a tensor, we
forces review the arguments given in Réf] regarding the differ-

ent “bulk” and “surface” contributions of the stress tensor

Vo= Tex (1.6 for liquid-vapor type of inhomogeneities.

whereo is the stress tensor arigl, is the externalforce per The argument is that, once we know the stress tensor, we
unit of volume. can separate it into two pieces

Il. THE STRESS TENSOR o(N)=00o(r)+oim(r), (2.6

VIA DENSITY FUNCTIONAL THEORY
where
Density functional theory asserts that the grand potential,

can be written ag1-3 Fo(0)={f(ripo)~[4— Ve DIpo(MIT (2.7

Q[PU)FF[PU)]—f drlu—Vex(r)lp(r), (2.1)  andTlis the unit tensor. If the tensar,(r) is defined in
such a way that

whereF[ p(r)] is the intrinsic Helmholtz free energy density

functional andV,,(r) is an external potential. ~ _ oF _
We assume that the free energy is expressed as V.oinn(r) = 3p(1) ; Vpo(r)=Vf(ripg), (2.8
0
F[P(f)]=f drf(r;p), (2.2 then, by constructiorV - [oo(r) + inn(r)] equals the left-

hand side of Eq.{2.4). As mentioned above, in general,

with f(r:p) a free energy density whose dependencer on FLpo(r)] is a nonlocal functional ofo(r). Clearly, any term
arises through its, in general, nonlocal dependence on tHecal in the densitysuch as the ideal gasannot contribute
densityp(r). We also consider thdt(r;p) is translationally 0 Tinn(r). Moreover, if the system is in domogeneous
and rotationally invariant as a consequence of the nature ditate, [Vpo(r)=0 everywher¢ then, not only V- gi(r)
the internal interactions of the particles in the fluid; we shallvanishes, but the tensor itself does so: For homogeneous
make use of these properties below. states one clearly wants

In this theory it is assumed th&f p(r)] is a known func- _
tion of the temperaturd. The chemical potential is that a(r)=—p(p, 1 (2.9
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in order to recover the thermodynamic result EQl), and it  a solution to Eq(2.8) but it is not symmetri¢6]; the second

follows from Egs.(2.6) and(2.7) that o;(r)=0. Thus the term, the novelty here, is needed to symmetrize it. This is

above separation is motivated by the facts that(r) arises  shown below, but first we verify thak;,, obeys Eq.(2.9):

only from the nonlocal part o[ po(r)] and by its vanishing Taking the divergence of the tensor we readily note that the

in homogeneous fluid states. contribution of the second term on the right-hand side of Eq.
Now, for a liquid-vapor type of inhomogeneity, the equi- (2.12) vanishes identically; hence we obtain

librium density po(r) is uniform everywhere, except at the

interfacial region where it changes “abruptly” from one of & ~ . _ _J g ,J’ld)\ - of(r—(1—=M)r';po)

its bulk values to the other. This change is registered by the *Tinn(1)= ' 0 r Spo(r+ar’)

gradient of the density¥ py(r) being zero everywhere but at

the interfacial region where it is “sharply” peaked; the gra-

dient of the density also defines the normatio the interfa-

cial “surface.” An important result thus follows from the

><Vp0(r+>\r’)]

proposed separation of the stress tensor (Ed): Consider :_f dr’fld)\i Sf(r—(1-N)r’;po)

the component of the stress tensmrmal to the interfacial o O\ Opo(r+Ar’)

surface

N ={(r;po) ~ [ Ve D) Ipo(N}+ oh(r),  (2.10 X Vpolr+Ar >]
whereoN=n-o-n. By integrating this equation throughout of(r';po) _, , 6f(r;po)
the whole volume we find :f dr| Vpo(r) Spo(r) ¥ Pl oy |
2.1

szdraN(r)—fdramh(r). (2.11) @13

which using the translational invariance fofr; py), see be-

The claim is that this equation is the generalization of thdoW. is Ed.(2.8). _ .
thermodynamic expression, Egl.1), for inhomogeneous I order to show that the tensot,,, Eq.(2.12, is sym-
fluids: The first term in the right-hand side is the generalizainetric, we first rewrite it as

tion of thebulk term “—pV"” (and reduces to it in the case 1

of homogeneous fluids Close to the interface™ has the Uﬁ‘ﬁ:_f drf AN[F LV gpo(F+AF') 15V po(r+Ar7)]
physical meaning of the pressure actiog the interfacial 0

surface. And far from the interface the fluid becomes uni-

form, and in those regiong;" truly becomes the thermody- ST (r—(1-Mr’:po)

namic pressure, i.egN— (1/3) Tro=—p(u,T). The second % Spo(r+Ar’)

term in Eq.(2.1]) is, therefore, thesurfacecontribution to 1

the free energy since, as discussed ab@ﬁé, is different _f drf dk)\r;r’ﬁvv(vypo(w)\r’)

from zero only in the interfacial region, whelpy(r)#0. 0

Of course, since the interfacial region actually has a finite SE(r—(1=\)r’: po)

width, the separation may seem arbitrary. However, and this — 0 )

is the purpose of the next section, one can show that the Opo(r+Ar’)

second term in Eq(2.11) leads to the correct identification S5F(r:po)

of the surface tension and higher-order surface contribution. +f dr(rl,— ra)Vﬁpo(r’)W, (2.19
0

We now return to present a very general symmetric stress
tensor that satisfies E¢R.5). Because of the proposed sepa-
ration of the tensor given in Eq2.6) we only need to be
concerned with the tensar,,. Consider the following ex-

where an integration by parts was performed. The first two
terms are manifestly symmetric, and in order to show that the
third one is also symmetric we have to appeal to the transla-

pression: tional and rotational invariance of the free energy density
1 SE(r—(1-M\)r';pg) f(r;po). Translational invariance meaf@] that
af,ﬁﬁ(r):-fdr’f dx e
0 Opo(r+Ar’) ., 6f(ripo)
Vf(ripo):f drV’po(r )5—(r’)’ (2.19
X1V gpo(r+Ar’) Po
1 SEr—(1=M)r’";po) while rotational invariance translates irt9)
v, [ ar [fan ,
0 Spo(r+Aar’) 5t(r;po)
rxVi(r; =Jdrr’><V’ M———. (2.1
Xt p[r oV ,po(r+ A1) =1,V po(r+Ar’)], (2.12 (ripo) Pol )5Po(r ) 219
where the indices represent the components of the involvegombining these two equations yields
guantities in Cartesian coordinates, summation over repeated 5t ( )
indices is assumed, and the gradient operators act on the f XV , ripo) _
variabler. The first term on the right-hand side is, by itself, dr(r=r’)xXV’po(r’) Spo(r’) 0. (217
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which shows that the last term in E@.14) is, indeed, sym- Sf(r;p)  dfy(p(r))

metric. . - - - 5p(r/) - dp(r)
The stress tensor here shown is certainly not unique since

one can always add to it a divergenceless symmetric tensor. 1 , — "~ o

In this regard, it is interesting to note the striking similarity +zo(r=r’) | dria(r=r)p(r")

between this expression Ed2.12 and its counterpart . - ,

through the virial rout¢2,3,5] in terms of the density-density +z p(Da([r=r')). (3.2

correlation function: Both expressions depend on a paramet-

ric integral (over \) connecting two spatial points in the gecayse of the factors of in the tensoiy,, cf. Eq.(2.12,
can choose different parametric integrals, giving rise to dif-

ferent stress tensors, without altering physically measurable
guantities such as the surface tension. We expect that the A. A planar interface

same type of differences can be found in the present case | this case, the density profile depends on only one co-
with similarly, as we show below, the surface tension beingyrdinate, sayz. For short-range intermolecular interactions
independent of the parametric integral ower one expects that, far from the critical point, the width of the
Although in order to show that an expression for the stressnterface is of the order of the range of the potentied call
tensor is correct, it is sufficient to show that it obeys theit &)). We assume that an arbitrarily weak external field is
force balance equatiof2.5), it may be of interest to have a applied so that, say, the Gibbs dividing surface is pinned at
systematic way of constructing such types of tensors. This ig=0. Mechanical stability of a planar interface requires the
the more so since, after all, the present density functionadtress normal to the interfa¢eamely, the “pressure)’to be
theory is not exclusive of statistical physics but belongs to ¢he same in both phases; therefore one can construct a den-
wider class of field theories. Such an explicit construction sity profile approaching the bulk values of vapor and liquid

however, is out of the scope of the present discussion andensitiespg andp;, asz— =, corresponding to the unique
deserves a separate treatmigit]. chemical potential and bulk pressure of Maxwell equal areas

constructionu coex@NAd P coexs T)- Such an inhomogeneous
solution exists for the van der Waals model E2}1) for zero
external fieldd12].
Several conclusions can be drawn from the assumed de-
Thus far, the density inhomogeneity(r) and the stress pendence of the profileg(z), anddirectly from the stress
tensor are quite general. In this section we shall analyze th@nsor:
cases of liquid-vapor states with the phases separated by a The stress tensor given by Eq&.6), (2.7), (2.12, and
planar and a spherical interface. In order to make explicit andi3.2), clearly, depends only onand can be written as
illustrate some of the results, we shall specialize to the van
der Waals nonlocal free energy functional; we shall later
point out results that are more general. For the van der Waals

model we use in an obvious notation, with the “inhomogeneous” part of
the stress tensor given by

S(r—r')

lll. COEXISTING LIQUID-VAPOR STATES

7(2)=0M2)22+ 0T (2) (XX +VY), (3.3

FLo(r)) = [ drfo(or) e
ohi2)=— | ar' | @l Dpdz-1-0)217
1
+ EJ f drdr’a([r—r')p(r)p(r’). (3.1 dpy(z+72")
X 4z , (3.9
This free energy may be thought of as arising from a func-
tional expansion up to second order terms. The first term oand
the right-hand side is local in the density and represents the
“reference” fluid, usually taken as the locally homogeneous
contribution due to the hard-core part of the intermolecular
potential. The kernel in the second term is proportional to thé”inh
direct correlation function[1,3]; it is considered to be
density-independent, and assumed spherically symmetric; dpo(z+2NZ')
the latter property ensures both translation and rotation in- X dz ' (3.5
variance. Since we are considering simple fluids with short-
range attractive interactions, the keria&l|r —r'|) is corre-
spondingly short rangefd.,3]. For a planar liquid-vapor interface one can calculate the
In order to evaluate the stress tensor of the precedingurface tension by means of its so-called mechanical defini-
section we need the following expression: tion

Cord i
@)= 53] O | @I Dpdlz-1-0)2xx
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o N \ and the fact that far from the interface the full stress tensor
Ymech™ f %dZ(U (2)—0(2) becomes constant with = — 3p(coex: T)-
1 (= ® 1 B. A spherical dro
=—f dzf dz’deRf ING(R%+2'2) P o
2) —w 0 Now we assume that the density profile depends on only

, the radial coordinatér|=r, and that the temperature and
M (3.6 chemical potential are such that the state is a drop of liquid
dz ' in its vapor. We shall assume that the system is enclosed in a
. ) large, closed, volume so that the drop is stable. Again, and
which after a change of variableg+Az'—z and o the van der Waals model it has been shown to be the case
z—(1-\)Z'—2z' and some manipulations can be cast as [12] the width of the interfacial region is of the order of the
rangeé, of the intermolecular interactior{ar from the criti-

XZ'polz—(1—N)Z']

Venech= — }foc dsz dz' dpo(2) dpo(Z') cal temperatunge and the size of the drop depends on the
4) - )= dz  dZ value of the chemical potential. That is, far<scoey ONE
finds a drop of liquid whose “radius” becomes larger the
X j d2R|R|2G[R2+ (z—2')2]. (3.7  closestu approachegicoex. As is well known, the radius of
the drop is not uniquely defined but if the drop is large,

In the ab ionR = . wo-di ional meaning that the Width_o_f _the interfagg is_ very small com-
n the above Expressio _(x,y) IS a two-dimensional pared to any of the definitions of the radius, we can speak of
(2 vector over I teriacia e, Two comments 1 e racusk(sT) s & gven auanity and reer to e i

) ' rences when needed.

pf the parametric mtegral_ ovex and consistent with the Again, several conclusions can be reached from the radial
independence of the particular representation of the Stre%@/mmetry of the profile:

tensor. And, second, we can verify that it agrees with the The stress tensor given by Eqg.6), (2.7), (2.12, and

Triezenberg-Zwanzig expression for the surface tengl@h (3.2 only depends om and its only components different
of a planar interface: from zero are:

LN e * 4, 4Po(2) dpo(Z') () =N+ T (r)(00+ ¢ 3.1

- Tf_wdzf_xdz 0D S (N=0NN)if+oT()(00+d¢), (312
wherer, 6, and ¢ are the unit vectors of spherical coordi-

XJ d2R|R|2C(R;z,2'), (3.9 nates. The explicit expressions of the normal and tangential

components of the tensor can be read off from the general

expressions, e.ggy=r-o-r. Clearly, the result3.12 does

not depend on the particular form pf(r) but only on its

assumed radial dependence.

F[p] Evaluation of the general form of the grand potential, Eq.

(3.9 (2.1, yields

where C(R;z,z’) is the direct correlation function of the
fluid, defined by

SRR Spnon(r) |,

contributes to the surface tensiondg|r|) and, therefore,
Ymech— Y1z - XE)[S+(r_r,)2]-
We are now in a position of evaluating the general result
Eg. (2.11) regarding the form of the grand potential. We find Without further knowledge of the density profile this is as far
the expected thermodynamic result: as we can get. Nevertheless, it is important to realize that the
second term, which contains the “surface” contribution to

_ N 1 , dpo(r) dpo(r’) (=
For the van der Waals model the only part@(fR;z,z’) that Q= | dro(r)— [ dr| dr'—r—— 5 0 ds
(

3.13

the free energy, is again independent of the parametric inte-
_ N(y N ()= _
Q_f dro™(2) j droinn(2) = = P(Hcoex IV y12A, gral over\ just as in the planar case.
(3.10 In order to show that, indeed, the contributions to the free

. ) . energy separate into “bulk” and “surface” with the correct
whereV is the total volume and the interfacial area. In the properties we can make use of the clear cut Separation of
above expression we have already identified the COEffICIer]éngth scales for |arge drops and approximate the density

of the areaA as, precisely, the surface tension given in Ed.po(r) as a “sharp” steplike profile. That is, we can write
(3.7), see also Eq(3.4). As to the identification of the first

term, namely,o™(2) = — p(teoexo T), this follows from the po(r)=p®(R—-r)+p,0(r—R)+0O(&,/R), (3.14
force balance equatioi2.5 (in the absence of external

fields with the form of the stress tensor given by E8.3),  where®(x) is the Heaviside step function, equal to one for
namely, positive values of its argument and zero otherwise, and
andp, are the bulk liquid and vapor densities for the given
values ofu and T. The last term in the above equation

d
— N =
o (2)=0, (313 means corrections of the order of the ratio of the wigljtof

dz
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the profile to the radiu®R(u,T) of the drop. Dietrich and with V,=47R%3 the volume of the drop and the surface free
Napiorkowski[14] and Keller and Mercharitl5] have also energyQs given by Eq.(3.15. Clearly, corrections such as
used this density profile in related interfacial problems. Tolman’s length[20] will arise from the higher-order terms
Substitution of the approximate profil®.14) into the sec- in (&,/R).
ond term in Eq(3.13 (that we callQ)g) yields It is of interest to point out here that using a Taylor ex-
pansion of the nonlocal term in the free energy one can ob-
- w tain the well-knownlocal van der Waals “square-gradient”
QSE4WR2{ - E(AP)ZJ drr3a(r?) free energy density functional and its generalization to
0 “square-Laplacian;” within such a local model one can also
calculate explicit expressions of the stress tefabrl9, and
+0(&,/R) the mechanical properties and free energies of the nonuni-

1 = o
+ = —24(Ap)2f drroe(r?)
0 form states discussed in this section.

E4-’7TR2 +O(§b/R), (315) IV. REMARKS
We have presented a representation of the stress tensor of
whereAp=p,—p, . In the second liney, is the surface ten- inhomogeneous states valid for any free energy density func-
sion of the plane, Eq(3.7), for the approximate profile tional with rotational and translational invariance. This result
(3.14). The coefficient is arigidity coefficient but due to appears to be the counterpart of the expression for the stress
the spherical symmetry we cannot identify the so-calledensor which is obtained directly from the microscopic forces
bending and splayor Gaussian contributions[16]. In this ~ and that involves the density-density correlation funcfidh
regard there is an ongoing controversy as to the actual forrfhis is partially corroborated by the fact that, on the one
and origin of these curvature corrections but it is out of thehand, the Kirkwood-Buff22] expression for the surface ten-
scope of this article to review the different points of view sion follows from the latter tensor, while the corresponding
[4,14,15,17,18 Nevertheless, it can be verified that the ri- Triezenberg-Zwanzig expression follows from the form of
gidity coefficient is related to théourth transverse moment the stress tensor here shown.
of the direct correlation functiofL9] in an analogous way in For the van der Waals model and for liquid-vapor-like
which the surface tension is related to the second moment étensity profiles we have been able to show that the grand
the direct correlation function, see E@®.8). It is of interest ~ potential can be straightforwardly written in terms of bulk
to note that due to the approximation in the density there ar@nd surface contributions that, in turn, are consistent with the
no linear contributions in the curvature nor higher order tharimechanical definition and the Triezenberg-Zwanzig expres-
two. sion of the surface tension and with the force balance equa-
We now need to verify that the identification of'(r) in tion. That is, the equation for mechanical equilibrium implies
Eq. (3.13 as the “pressure,” is appropriate. For this we usethat the normal component of the stress tensor is constant for
the equation for mechanical equilibriut®; =0, written as  the planar interface, while for the spherical one that the nor-
mal stress satisfy the Young-Laplace equation; these, to-
aoN(r) 2 > gether with the asymptotic value of the normal stress as the
+—oMNr)—=0o"(r)=0, (3.16  bulk thermodynamic pressure, allows us to make the correct
ar r r identification of the bulk term. Thus we have shown that the
stress tensor so obtained leads to the correct mechanical
which, after integration over, becomes the well-known properties of the liquid-vapor inhomogenous state.
Young-Laplace equation relating the differences in pressures Although one needs an explicit form of the free energy
“inside” and “outside” the drop: density in order to show the inner consistency of the differ-
ent results mentioned in the previous paragraph, one can
w (2 2 find, nevertheless, quite general expressions for the grand
O-N(O)—O-N(oc):f dr(—g'N(r)— —aT(r)) potential using only the planar or spherical symmetry of the
0 r r density profile. That is, one can show, directly from the
stress tensor that

1
Yot ksﬁi

2
=~ 2%+ 0(&/R), (3.17
N of(r;po)
Q= | dra(r)+ | dr | dr’ ———(r'—=1)-V'po(r'),
: . . Spo(r")
where in the second line we have made use of the approxi- 4.0
mately sharp profile Eqg.(3.14. We thus identify

o"(0)=—p, and o™(«)=—p,, the pressures of the bulk valid for py=p,(2) andpe=po(r) but not valid for arbitrary
liquid and vapor phases, respectively. It is important to notgnhomogeneitiesthis may be so because an arbitrary inho-
that the result(3.15 and (3.17) are consistent with each mogeneity needs a particular external field to sustain it
other within the approximation used. That is, the above twaqwever we cannot proceed further, nor can we show the
results could also be derived directly from tfapproximat¢  other mechanical properties, without making extra assump-
grand potential tions on the structure of the free energy density; p). It is,

nevertheless, interesting to observe thais independent of

=—pV,—p,V,+Qs, (3.18  the parametric integral ovex.
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As a final comment, we observe that with the knowledgedinate systemf,t;,t,), with 1=V p,/|Vp,| andt, andt,
of a stress tensar,; one may be tempted to calculate the vectors orthogonal t& but not necessarily between them
mechanical free energy associated to it. Namely, one cafpy): the “trick” is to use 8, ,=n,nz+g; t'th with g;; the
evaluate the produet,zdu, s, with du,, the differential of e a8 erf Sl s !

- P apHap ap 2D metric of the level surfaces. Thus the expression of the
the strain tensof23]. However, due to the form of the stress grand potential in terms of the normal components of the
tensor used hersee Eqs(2.6) and(2.7)], stress tensor bears the same information as the mechanical

= 085+ 022 (4.2 free energy associated with the full stress tensor.
with w=f—(u— Ve p, and the fact that the differential of
volume isdr = 8,5dU,g, it follows that ACKNOWLEDGMENTS

wdr:oagdua/;—crfgduaﬁ=0'\‘dr—Ui'?ihdr 4.3 This work was completed during V.R.-R.’s stay at the

Courant Institute of Mathematical Sciences, N.Y.U. This

valid for any geometry of(density level surfaces. The above work was supported in part by the National Aeronautics and

result can be easily shown to be correct since the densitgpace Administration. V.R.-R. acknowledges the National
level surfaces can be used to define a semiorthogonal cooResearch Corporation for partial support.

[1] J.K. Percus, inThe Liquid State of Matter: Fluids, Simple and Lee, M.M. Telo da Gama, and K.E. Gubbinbjd. 85, 490

Complex edited by E.W. Montroll and J.L. LebowitdNorth- (1986.

Holland, Amsterdam, 1982 [13] D.G. Triezenberg and R. Zwanzig, Phys. Rev. L&8, 1183
[2] J.S. Rowlinson and B. WidonMolecular Theory of Capillar- (1972.

ity (Clarendon, Oxford, 1982 [14] S. Dietrich and M. Napiorkowski, Physica 577, 437 (1991);
[3] R. Evans, Adv. Phys28, 143(1979. M. Napiorkowski and S. Dietrich, Phys. Rev. &, 1836
[4] J.S. Rowlinson, J. Phys. Condens. MaieAl (1994. (1993.

[5] For an authoritative discussion, see Chapter 4 of Rf.see [15] J.B. Keller and J.G. Merchant, J. Stat. Ph§8, 1039 (1991).
also M. Baus and R. Lovett, Phys. Rev. L&, 1781(1990;  16] W, Helfrich, Z. Naturforsch. Teil A28, 693 (1973.

Phys. Rev. A44, 1211 (199)); J.R. Rowlinson, Phys. ReV. 121 £ M Blokhuis and D. Bedeaux, Mol. Phy80, 705 (1993
Lett. 67, 406 (1991); J.K. Percus, L.A. Pozhar, and K.E. Gub- Gompper and Zschocke, Phys. RevAg, 4836(1992.
bins, Phys. Rev. 51, 261(1999. [18] C. Varea and A. Robledo, Mol. Phy&o be publishel

6] J.K. Percus, Chem. Phys. Let23 311(1986.
%7% V. Romero-Roch. C Verea and A Rgblec?o Mol. Phy&0 [19] V. Romero-Roch, C. Varea, and A. Robledo, Phys. Rev. A
: T ' ' T : 44, 8417(1991); Phys. Rev. 48, 1600(1993.

821(1993.
[8] N.G. van Kampen, Phys. Rev. 235, 362 (1964). [20] R.C. Tolman, J. Chem._Phy$7, 333(1949.
[9] J.K. Percus, J. Stat. Phya3, 657 (1980. [21] A.J.M. Yang, P.D. Fleming lll, and J.H. Gibbs, J. Chem. Phys.
[10] J.H. Irving and J.G. Kirkwood, J. Chem. Phys, 817 (1950: 64, 3732(1976.
A. Harasima, Adv. Chem. Phyd, 203 (1958: P. Schofield [22] J.G. Kirkwood and F.P. Buff, J. Chem. Phyl&/, 338(1949.
and J.R. Henderson, Proc. R. Soc3A9, 231 (1982. [23] L. Landau and L. Lifshitz,Theory of Elasticity(Pergamon,
[11] J.K. Percus, J. Stat. Phy@o be publishey Oxford, 1970.

[12] P. Tarazona and R. Evans, Mol. Phy8 799 (1983; D.W. [24] C.E. WeatherborneDifferential Geometry of Three Dimen-
Oxtoby and R. Evans, J. Chem. Phg€, 7521 (1988; D.J. sions(Cambridge University Press, London, 19300l. 2.



