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The theory of the stress tensor of nonuniform fluids by means of density functional theory is reviewed. We
present a general, symmetric, stress tensor valid for any free energy density functional with translational and
rotational invariance. We specialize to the nonlocal van der Waals free energy density functional of a simple
fluid and study inhomogeneous liquid-vapor coexistence states, separated by either a planar or a spherical
interface. It is shown that the stress tensor contains all the information regarding the mechanical equilibrium of
the state of the system. On the one hand, it leads to the expected expressions and relationships of the interfacial
quantities and, on the other, it allows for a correct separation of the bulk and interfacial contributions to the free
energy.@S1063-651X~96!07305-9#

PACS number~s!: 05.70.Fh, 05.20.2y, 82.65.Dp

I. INTRODUCTION

The description of the liquid-vapor coexistence states is
one of the central problems of the study of nonuniform fluids
@1–4#. Among the difficulties that one faces is the appropri-
ate separation of contributions of the free energy arising
from the bulk and the interface between the two phases; this
is particulary important when the description is attempted at
a microscopic level. Related to this issue is the elucidation of
the corresponding stress, or pressure, tensor of the fluid. That
is, since the density of the fluid is inhomogeneous, it is no
longer true that the pressure is uniform and isotropic every-
where. This lack of uniformity and isotropy is, in fact, re-
sponsible for the surface tension that develops between the
liquid and vapor phases, and thus, the importance of studying
the stress or pressure tensor of these states. There have been
many important attempts in obtaining general expressions for
the stress tensor and in relating these to measurable quanti-
tites such as the surface tension@5,6#. As is known, one of
the most uncomfortable properties of such a tensor is that it
appears not to be unique, in the sense~see below! that the
condition for mechanical equilibrium leaves a sort of
‘‘gauge’’ freedom in the determination of the stress tensor;
that is, the condition of the balance of forces is a statement
about thedivergenceof the tensor and thus, it seems, one is
free to add to the stress tensor, the curl of another tensor
without altering the equilibrium condition.

In this article we present a very general representation of
the stress tensor within density functional theory that only
requires translational and rotational invariance of the free
energy density. A similar expression was already shown by
one of the authors@6# but it was not symmetric. We also
review the argument previously shown@7# that, once the
stress tensor is known, one can express the free energy in
terms of its bulk and interfacial contributions. Then, special-
izing to the nonlocal van der Waals model for the free energy
density functional we explicitly verify and illustrate that the
stress tensor has the correct mechanical properties of the
fluid, and this indeed leads to the above-mentioned separa-

tion of the free energy. We shall examine the case in which
a planar interface is present and the case of a spherical drop
of liquid in coexistence with its vapor.

But before we enter into the discussion of the stress tensor
within density functional theory, we shall discuss some ther-
modynamics of the liquid-vapor states. This is important
since thermodynamic and mechanical arguments are very
clear as to how different terms contribute to the free energy,
while the path from the microscopic point of view of statis-
tical mechanics is not always unambiguous. Thus we shall
first state what we are trying to achieve.

Working in the grand canonical ensemble is particularly
simple for our purposes. Namely, for a homogeneous system,
we know that the grand potentialV(V,m,T), a function of
the volume, temperature and chemical potential, is given by

V~V,m,T!52p~m,T!V, ~1.1!

wherep(m,T) is the thermodynamic pressure.
When a system finds itself in a coexistence liquid-vapor

state separated by a planar interface, we expect from general
considerations of thermodynamics that the grand potential
should now be written as

V52pV1gS, ~1.2!

whereg is surface tension of the interface andS its area. The
pressure is no longer isotropic and, indeed, the surface ten-
sion is mechanically related to the difference of stresses as
@2#

g5E dz~sT2sN!, ~1.3!

wheresN and sT are the components of the stress tensor
normal and tangentialto the interfacial surface;z is the co-
ordinate normal to the interface. The pressure that appears in
Eq. ~1.2! is equal to~minus! the normal stress,p52sN,
constant everywhere and equal to the pressure of the ‘‘Max-
well equal areas’’ construction@8#.
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When the state corresponds to a drop of~say! liquid in its
vapor, the grand potential is now

V52plVl2pv~V2Vl !1gS, ~1.4!

wherepl and pv are the pressures of the liquid and vapor
phases, respectively;Vl is the volume of the drop andS its
area. By the Young-Laplace equation the pressures and the
surface tension are related as

pl2pv52
g

R
, ~1.5!

whereR is the radius of the drop. Again, the pressure is
equal to~minus! the component of the stress tensor normal to
the interface.

The previous results are all based on general aspects of
thermodynamics and mechanical equilibrium and do not in-
volve any microscopic details of statistical mechanics. It
should be clear that if an account is taken of the microscopic
nature of the fluid particles, the above expressions may only
be approximate in the sense that there may not be a clear cut
separation of ‘‘bulk’’ and ‘‘surface’’ because the interfacial
region actually occupies volume.

For our purposes, we point out that complete thermody-
namic equilibrium in a system requires thermal equilibrium
~same temperature everywhere!, chemical equilibrium~for a
one-species fluid, same chemical potential everywhere! and
mechanical equilibrium. For homogeneous systems, the lat-
ter translates into equal~isotropic! pressure everywhere, but
for an inhomogeneous fluid, the corresponding mechanical
equilibrium condition is now the equation of balance of
forces

“•s̃52fext ~1.6!

wheres̃ is the stress tensor andfext is theexternalforce per
unit of volume.

II. THE STRESS TENSOR
VIA DENSITY FUNCTIONAL THEORY

Density functional theory asserts that the grand potential,
can be written as@1–3#

V@r~r !#5F[r(r )]2E dr @m2Vext~r !#r~r !, ~2.1!

whereF@r(r )# is the intrinsic Helmholtz free energy density
functional andVext(r ) is an external potential.

We assume that the free energy is expressed as

F@r~r !#5E dr f ~r ;r!, ~2.2!

with f (r ;r) a free energy density whose dependence onr
arises through its, in general, nonlocal dependence on the
densityr(r ). We also consider thatf (r ;r) is translationally
and rotationally invariant as a consequence of the nature of
the internal interactions of the particles in the fluid; we shall
make use of these properties below.

In this theory it is assumed thatF@r(r )# is a known func-
tion of the temperatureT. The chemical potential is that

given bym in Eq. ~2.1!. Therefore the equilibrium state and
the actual value of the grand potentialV@r(r )# at equilib-
rium is found by minimizing ~actually extremizing!
V@r(r )#, that is, by solving the Euler-Lagrange equation

dF

dr~r …
U
r0

5m2Vext~r !. ~2.3!

The functionr0(r ) is the equilibrium density profile for the
given values ofT andm. But the Euler-Lagrange equationis
also the condition for mechanical equilibrium: namely, by
multiplying Eq.~2.3! by the gradient of the equilibrium den-
sity, “r0(r ), we obtain

dF

dr~r !
U
r0

“r0~r !2“$@m2Vext~r !#r0~r !%

5r0~r !“Vext~r !. ~2.4!

Since the right-hand side of this equation is~minus! the ex-
ternal force per unit of volume acting on the fluid, the left-
hand side can be identified as the divergence of the stress
tensor in its equilibrium state. That is, Eq.~2.4! corresponds
to

“•s̃~r !5r0~r !“Vext~r !. ~2.5!

As we discuss below one can find very general expres-
sions for a symmetric stress tensor satisfying the balance
force equation~2.5!. But before presenting such a tensor, we
review the arguments given in Ref.@7# regarding the differ-
ent ‘‘bulk’’ and ‘‘surface’’ contributions of the stress tensor
for liquid-vapor type of inhomogeneities.

The argument is that, once we know the stress tensor, we
can separate it into two pieces

s̃~r !5s̃0~r !1s̃ inh~r !, ~2.6!

where

s̃0~r !5$ f ~r ;r0!2@m2Vext~r !#r0~r !% 1̃ ~2.7!

and 1̃ is the unit tensor. If the tensors̃ inh~r ) is defined in
such a way that

“•s̃ inh~r !5
dF

dr~r …
U
r0

“r0~r !2“ f ~r ;r0!, ~2.8!

then, by construction“•@s̃0(r )1s̃ inh(r )# equals the left-
hand side of Eq.~2.4!. As mentioned above, in general,
F@r0(r )# is a nonlocal functional ofr0(r ). Clearly, any term
local in the density~such as the ideal gas! cannot contribute
to s̃ inh(r ). Moreover, if the system is in ahomogeneous
state, @“r0(r )50 everywhere# then, not only“•s̃ inh(r )
vanishes, but the tensor itself does so: For homogeneous
states one clearly wants

s̃~r !52p~m,T! 1̃ ~2.9!
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in order to recover the thermodynamic result Eq.~1.1!, and it
follows from Eqs.~2.6! and ~2.7! that s̃ inh(r )50. Thus the
above separation is motivated by the facts thats̃ inh(r ) arises
only from the nonlocal part ofF@r0(r )# and by its vanishing
in homogeneous fluid states.

Now, for a liquid-vapor type of inhomogeneity, the equi-
librium densityr0(r ) is uniform everywhere, except at the
interfacial region where it changes ‘‘abruptly’’ from one of
its bulk values to the other. This change is registered by the
gradient of the density“r0(r ) being zero everywhere but at
the interfacial region where it is ‘‘sharply’’ peaked; the gra-
dient of the density also defines the normaln̂ to the interfa-
cial ‘‘surface.’’ An important result thus follows from the
proposed separation of the stress tensor Eq.~2.6!: Consider
the component of the stress tensornormal to the interfacial
surface

sN~r !5$ f ~r ;r0!2@m2Vext~r !#r0~r !%1s inh
N ~r !, ~2.10!

wheresN5n̂•s̃•n̂. By integrating this equation throughout
the whole volume we find

V5E drsN~r !2E drs inh
N ~r !. ~2.11!

The claim is that this equation is the generalization of the
thermodynamic expression, Eq.~1.1!, for inhomogeneous
fluids: The first term in the right-hand side is the generaliza-
tion of thebulk term ‘‘2pV’’ ~and reduces to it in the case
of homogeneous fluids!. Close to the interfacesN has the
physical meaning of the pressure actingon the interfacial
surface. And far from the interface the fluid becomes uni-
form, and in those regions,sN truly becomes the thermody-
namic pressure, i.e.,sN→(1/3)Trs̃52p(m,T). The second
term in Eq.~2.11! is, therefore, thesurfacecontribution to
the free energy since, as discussed above,s inh

N is different
from zero only in the interfacial region, where“r0(r )Þ0.
Of course, since the interfacial region actually has a finite
width, the separation may seem arbitrary. However, and this
is the purpose of the next section, one can show that the
second term in Eq.~2.11! leads to the correct identification
of the surface tension and higher-order surface contribution.

We now return to present a very general symmetric stress
tensor that satisfies Eq.~2.5!. Because of the proposed sepa-
ration of the tensor given in Eq.~2.6! we only need to be
concerned with the tensors̃ inh . Consider the following ex-
pression:

s inh
ab~r !52E dr 8E

0

1

dl
d f „r2~12l!r 8;r0…

dr0~r1lr 8!

3r a8¹br0~r1lr 8!

2“nE dr 8E
0

1

dll
d f „r2~12l!r 8;r0…

dr0~r1lr 8!

3r b8 @r a8“nr0~r1lr 8!2r n8“ar0~r1lr 8!#, ~2.12!

where the indices represent the components of the involved
quantities in Cartesian coordinates, summation over repeated
indices is assumed, and the gradient operators act on the
variabler . The first term on the right-hand side is, by itself,

a solution to Eq.~2.8! but it is not symmetric@6#; the second
term, the novelty here, is needed to symmetrize it. This is
shown below, but first we verify thats̃ inh obeys Eq.~2.8!:
Taking the divergence of the tensor we readily note that the
contribution of the second term on the right-hand side of Eq.
~2.12! vanishes identically; hence we obtain

“•s̃ inh~r !52E dr 8E
0

1

dlr 8•“H d f „r2~12l!r 8;r0…

dr0~r1lr 8!

3“r0~r1lr 8!J
52E dr 8E

0

1

dl
]

]l H d f „r2~12l!r 8;r0…

dr0~r1lr 8!

3“r0~r1lr 8!J
5E dr F“r0~r !

d f ~r 8;r0!

dr0~r !
2“8r0~r 8!

d f ~r ;r0!

dr0~r 8! G ,
~2.13!

which using the translational invariance off (r ;r0), see be-
low, is Eq. ~2.8!.

In order to show that the tensors̃ inh , Eq. ~2.12!, is sym-
metric, we first rewrite it as

s inh
ab52E drE

0

1

dl@r a8“br0~r1lr 8!1r b8“ar0~r1lr 8!#

3
d f „r2~12l!r 8;r0…

dr0~r1lr 8!

2E drE
0

1

dllr a8 r b8“nS“nr0~r1lr 8!

3
d f „r2~12l!r 8;r0…

dr0~r1lr 8! D
1E dr ~r a82r a!“br0~r 8!

d f ~r ;r0!

dr0~r 8!
, ~2.14!

where an integration by parts was performed. The first two
terms are manifestly symmetric, and in order to show that the
third one is also symmetric we have to appeal to the transla-
tional and rotational invariance of the free energy density
f (r ;r0). Translational invariance means@6# that

“ f ~r ;r0!5E dr“8r0~r 8!
d f ~r ;r0!

dr0~r 8!
, ~2.15!

while rotational invariance translates into@9#

r3“ f ~r ;r0!5E drr 83“8r0~r 8!
d f ~r ;r0!

dr0~r 8!
. ~2.16!

Combining these two equations yields

E dr ~r2r 8!3“8r0~r 8!
d f ~r ;r0!

dr0~r 8!
50, ~2.17!
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which shows that the last term in Eq.~2.14! is, indeed, sym-
metric.

The stress tensor here shown is certainly not unique since
one can always add to it a divergenceless symmetric tensor.
In this regard, it is interesting to note the striking similarity
between this expression Eq.~2.12! and its counterpart
through the virial route@2,3,5# in terms of the density-density
correlation function: Both expressions depend on a paramet-
ric integral ~over l) connecting two spatial points in the
fluid. In the virial expression it has been shown@10# that one
can choose different parametric integrals, giving rise to dif-
ferent stress tensors, without altering physically measurable
quantities such as the surface tension. We expect that the
same type of differences can be found in the present case
with similarly, as we show below, the surface tension being
independent of the parametric integral overl.

Although in order to show that an expression for the stress
tensor is correct, it is sufficient to show that it obeys the
force balance equation~2.5!, it may be of interest to have a
systematic way of constructing such types of tensors. This is
the more so since, after all, the present density functional
theory is not exclusive of statistical physics but belongs to a
wider class of field theories. Such an explicit construction,
however, is out of the scope of the present discussion and
deserves a separate treatment@11#.

III. COEXISTING LIQUID-VAPOR STATES

Thus far, the density inhomogeneityr0(r ) and the stress
tensor are quite general. In this section we shall analyze the
cases of liquid-vapor states with the phases separated by a
planar and a spherical interface. In order to make explicit and
illustrate some of the results, we shall specialize to the van
der Waals nonlocal free energy functional; we shall later
point out results that are more general. For the van der Waals
model we use

F[r(r )]5E dr f 0„r~r !…

1
1

2E E drdr 8ṽ~ ur2r 8u!r~r !r~r 8!. ~3.1!

This free energy may be thought of as arising from a func-
tional expansion up to second order terms. The first term on
the right-hand side is local in the density and represents the
‘‘reference’’ fluid, usually taken as the locally homogeneous
contribution due to the hard-core part of the intermolecular
potential. The kernel in the second term is proportional to the
direct correlation function@1,3#; it is considered to be
density-independent, and assumed spherically symmetric;
the latter property ensures both translation and rotation in-
variance. Since we are considering simple fluids with short-
range attractive interactions, the kernelṽ(ur2r 8u) is corre-
spondingly short ranged@1,3#.

In order to evaluate the stress tensor of the preceding
section we need the following expression:

d f ~r ;r!

dr~r 8!
5
d f0„r~r !…

dr~r !
d~r2r 8!

1 1
2 d~r2r 8!E dr 9ṽ~r2r 9!r~r 9!

1 1
2 r~r !ṽ~ ur2r 8u!. ~3.2!

Because of the factors ofr 8 in the tensors̃ inh , cf. Eq.~2.12!,
only the last term of the above equation contributes.

A. A planar interface

In this case, the density profile depends on only one co-
ordinate, sayz. For short-range intermolecular interactions
one expects that, far from the critical point, the width of the
interface is of the order of the range of the potential~we call
it jb). We assume that an arbitrarily weak external field is
applied so that, say, the Gibbs dividing surface is pinned at
z50. Mechanical stability of a planar interface requires the
stress normal to the interface~namely, the ‘‘pressure’’! to be
the same in both phases; therefore one can construct a den-
sity profile approaching the bulk values of vapor and liquid
densitiesrg andr l , asz→6`, corresponding to the unique
chemical potential and bulk pressure of Maxwell equal areas
constructionmcoexandp(m coex,T). Such an inhomogeneous
solution exists for the van der Waals model Eq.~3.1! for zero
external fields@12#.

Several conclusions can be drawn from the assumed de-
pendence of the profiler0(z), anddirectly from the stress
tensor:

The stress tensor given by Eqs.~2.6!, ~2.7!, ~2.12!, and
~3.2!, clearly, depends only onz and can be written as

s̃~z!5sN~z!ẑẑ1sT~z!~ x̂x̂1 ŷŷ!, ~3.3!

in an obvious notation, with the ‘‘inhomogeneous’’ part of
the stress tensor given by

s inh
N ~z!52

1

2E dr 8E
0

1

dlṽ~ ur 8u!r0@z2~12l!z8#z8

3
dr0~z1lz8!

dz
, ~3.4!

and

s inh
T ~z!52

1

2

d

dzE dr 8E
0

1

dlṽ~ ur 8u!r0@z2~12l!z8#x8x8

3
dr0~z1lz8!

dz
. ~3.5!

For a planar liquid-vapor interface one can calculate the
surface tension by means of its so-called mechanical defini-
tion
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gmech5E
2`

`

dz„sT~z!2sN~z!…

5
1

2E2`

`

dzE
2`

`

dz8E d2RE
0

1

dlṽ~R21z82!

3z8r0@z2~12l!z8#
dr0~z1lz8!

dz
, ~3.6!

which after a change of variablesz1lz8→z and
z2(12l)z8→z8 and some manipulations can be cast as

gmech52
1

4E2`

`

dzE
2`

`

dz8
dr0~z!

dz

dr0~z8!

dz8

3E d2RuRu2ṽ@R21~z2z8!2#. ~3.7!

In the above expressionsR5(x,y) is a two-dimensional
~2D! vector over the interfacial plane. Two comments are in
order: First, we note that the above expression is independent
of the parametric integral overl and consistent with the
independence of the particular representation of the stress
tensor. And, second, we can verify that it agrees with the
Triezenberg-Zwanzig expression for the surface tension@13#
of a planar interface:

gTZ52
kT

4 E
2`

`

dzE
2`

`

dz8
dr0~z!

dz

dr0~z8!

dz8

3E d2RuRu2C~R;z,z8!, ~3.8!

whereC(R;z,z8) is the direct correlation function of the
fluid, defined by

C~R2R8;z,z8!5
1

kT

d2F@r#

dr~r !dr~r 8!
U
r0

. ~3.9!

For the van der Waals model the only part ofC(R;z,z8) that
contributes to the surface tension isṽ(ur u) and, therefore,
gmech5gTZ .

We are now in a position of evaluating the general result
Eq. ~2.11! regarding the form of the grand potential. We find
the expected thermodynamic result:

V5E drsN~z!2E drs inh
N ~z!52p~mcoex,T!V1gTZA,

~3.10!

whereV is the total volume andA the interfacial area. In the
above expression we have already identified the coefficient
of the areaA as, precisely, the surface tension given in Eq.
~3.7!, see also Eq.~3.4!. As to the identification of the first
term, namely,sN(z)52p(mcoex,T), this follows from the
force balance equation~2.5! ~in the absence of external
fields! with the form of the stress tensor given by Eq.~3.3!,
namely,

d

dz
sN~z!50, ~3.11!

and the fact that far from the interface the full stress tensor
becomes constant with Trs̃523p(mcoex,T).

B. A spherical drop

Now we assume that the density profile depends on only
the radial coordinateur u5r , and that the temperature and
chemical potential are such that the state is a drop of liquid
in its vapor. We shall assume that the system is enclosed in a
large, closed, volume so that the drop is stable. Again, and
for the van der Waals model it has been shown to be the case
@12#, the width of the interfacial region is of the order of the
rangejb of the intermolecular interactions~far from the criti-
cal temperature!, and the size of the drop depends on the
value of the chemical potential. That is, form,mcoex one
finds a drop of liquid whose ‘‘radius’’ becomes larger the
closestm approachesmcoex. As is well known, the radius of
the drop is not uniquely defined but if the drop is large,
meaning that the width of the interfacejb is very small com-
pared to any of the definitions of the radius, we can speak of
the radiusR(m,T) as a given quantity and refer to the dif-
ferences when needed.

Again, several conclusions can be reached from the radial
symmetry of the profile:

The stress tensor given by Eqs.~2.6!, ~2.7!, ~2.12!, and
~3.2! only depends onr and its only components different
from zero are:

s̃~r !5sN~r ! r̂ r̂1sT~r !~ ûû1f̂f̂ !, ~3.12!

where r̂ , û, and f̂ are the unit vectors of spherical coordi-
nates. The explicit expressions of the normal and tangential
components of the tensor can be read off from the general
expressions, e.g.,sN5 r̂•s̃• r̂ . Clearly, the result~3.12! does
not depend on the particular form ofr0(r ) but only on its
assumed radial dependence.

Evaluation of the general form of the grand potential, Eq.
~2.11!, yields

V5E drsN~r !2
1

4E drE dr 8
dr0~r !

dr

dr0~r 8!

dr8
E
0

`

ds

3ṽ@s1~r2r 8!2#. ~3.13!

Without further knowledge of the density profile this is as far
as we can get. Nevertheless, it is important to realize that the
second term, which contains the ‘‘surface’’ contribution to
the free energy, is again independent of the parametric inte-
gral overl just as in the planar case.

In order to show that, indeed, the contributions to the free
energy separate into ‘‘bulk’’ and ‘‘surface’’ with the correct
properties we can make use of the clear cut separation of
length scales for large drops and approximate the density
r0(r ) as a ‘‘sharp’’ steplike profile. That is, we can write

r0~r !'r lQ~R2r !1rvQ~r2R!1O~jb /R!, ~3.14!

whereQ(x) is the Heaviside step function, equal to one for
positive values of its argument and zero otherwise, andr l
andrv are the bulk liquid and vapor densities for the given
values ofm and T. The last term in the above equation
means corrections of the order of the ratio of the widthjb of
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the profile to the radiusR(m,T) of the drop. Dietrich and
Napiorkowski@14# and Keller and Merchant@15# have also
used this density profile in related interfacial problems.

Substitution of the approximate profile~3.14! into the sec-
ond term in Eq.~3.13! ~that we callVS) yields

VS>4pR2F2
p

2
~Dr!2E

0

`

drr 3ṽ~r 2!

1
1

R2

p

24
~Dr!2E

0

`

drr 5ṽ~r 2!G1O~jb /R!

>4pR2S gp1ks
1

R2D 1O~jb /R!, ~3.15!

whereDr5r l2rv . In the second linegp is the surface ten-
sion of the plane, Eq.~3.7!, for the approximate profile
~3.14!. The coefficientks is a rigidity coefficient but due to
the spherical symmetry we cannot identify the so-called
bending and splay~or Gaussian! contributions@16#. In this
regard there is an ongoing controversy as to the actual form
and origin of these curvature corrections but it is out of the
scope of this article to review the different points of view
@4,14,15,17,18#. Nevertheless, it can be verified that the ri-
gidity coefficient is related to thefourth transverse moment
of the direct correlation function@19# in an analogous way in
which the surface tension is related to the second moment of
the direct correlation function, see Eq.~3.8!. It is of interest
to note that due to the approximation in the density there are
no linear contributions in the curvature nor higher order than
two.

We now need to verify that the identification ofsN(r ) in
Eq. ~3.13! as the ‘‘pressure,’’ is appropriate. For this we use
the equation for mechanical equilibrium,“•s̃50, written as

]sN~r !

]r
1
2

r
sN~r !2

2

r
sT~r !50, ~3.16!

which, after integration overr , becomes the well-known
Young-Laplace equation relating the differences in pressures
‘‘inside’’ and ‘‘outside’’ the drop:

sN~0!2sN~`!5E
0

`

drS 2r sN~r !2
2

r
sT~r ! D

>2
2

R
gp1O~jb /R!, ~3.17!

where in the second line we have made use of the approxi-
mately sharp profile Eq. ~3.14!. We thus identify
sN(0)52pl and sN(`)52pv , the pressures of the bulk
liquid and vapor phases, respectively. It is important to note
that the results~3.15! and ~3.17! are consistent with each
other within the approximation used. That is, the above two
results could also be derived directly from the~approximate!
grand potential

V>2plVl2pvVv1VS , ~3.18!

with Vl54pR3/3 the volume of the drop and the surface free
energyVS given by Eq.~3.15!. Clearly, corrections such as
Tolman’s length@20# will arise from the higher-order terms
in (jb /R).

It is of interest to point out here that using a Taylor ex-
pansion of the nonlocal term in the free energy one can ob-
tain the well-knownlocal van der Waals ‘‘square-gradient’’
free energy density functional and its generalization to
‘‘square-Laplacian;’’ within such a local model one can also
calculate explicit expressions of the stress tensor@21,19#, and
the mechanical properties and free energies of the nonuni-
form states discussed in this section.

IV. REMARKS

We have presented a representation of the stress tensor of
inhomogeneous states valid for any free energy density func-
tional with rotational and translational invariance. This result
appears to be the counterpart of the expression for the stress
tensor which is obtained directly from the microscopic forces
and that involves the density-density correlation function@2#;
this is partially corroborated by the fact that, on the one
hand, the Kirkwood-Buff@22# expression for the surface ten-
sion follows from the latter tensor, while the corresponding
Triezenberg-Zwanzig expression follows from the form of
the stress tensor here shown.

For the van der Waals model and for liquid-vapor-like
density profiles we have been able to show that the grand
potential can be straightforwardly written in terms of bulk
and surface contributions that, in turn, are consistent with the
mechanical definition and the Triezenberg-Zwanzig expres-
sion of the surface tension and with the force balance equa-
tion. That is, the equation for mechanical equilibrium implies
that the normal component of the stress tensor is constant for
the planar interface, while for the spherical one that the nor-
mal stress satisfy the Young-Laplace equation; these, to-
gether with the asymptotic value of the normal stress as the
bulk thermodynamic pressure, allows us to make the correct
identification of the bulk term. Thus we have shown that the
stress tensor so obtained leads to the correct mechanical
properties of the liquid-vapor inhomogenous state.

Although one needs an explicit form of the free energy
density in order to show the inner consistency of the differ-
ent results mentioned in the previous paragraph, one can
find, nevertheless, quite general expressions for the grand
potential using only the planar or spherical symmetry of the
density profile. That is, one can show, directly from the
stress tensor that

V5E drsN~r !1E drE dr 8
d f ~r ;r0!

dr0~r 8!
~r 82r !•“8r0~r 8!,

~4.1!

valid for r05r0(z) andr05r0(r ) but not valid for arbitrary
inhomogeneities~this may be so because an arbitrary inho-
mogeneity needs a particular external field to sustain it!.
However we cannot proceed further, nor can we show the
other mechanical properties, without making extra assump-
tions on the structure of the free energy densityf (r ;r). It is,
nevertheless, interesting to observe thatV is independent of
the parametric integral overl.

53 5135STRESS TENSOR OF LIQUID-VAPOR STATES OF . . .



As a final comment, we observe that with the knowledge
of a stress tensorsab one may be tempted to calculate the
mechanical free energy associated to it. Namely, one can
evaluate the productsabduab , with duab the differential of
the strain tensor@23#. However, due to the form of the stress
tensor used here@see Eqs.~2.6! and ~2.7!#,

sab5vdab1sab
inh ~4.2!

with v5 f2(m2Vext)r, and the fact that the differential of
volume isdr5dabduab , it follows that

vdr5sabduab2sab
inhduab5sNdr2s inh

N dr ~4.3!

valid for anygeometry of~density! level surfaces. The above
result can be easily shown to be correct since the density
level surfaces can be used to define a semiorthogonal coor-

dinate system (n̂,t1 ,t2), with n̂5“r0 /u“r0u and t1 and t2
vectors orthogonal ton̂ but not necessarily between them
@24#: the ‘‘trick’’ is to use dab5nanb1gi j ta

i tb
j with gi j the

2D metric of the level surfaces. Thus the expression of the
grand potential in terms of the normal components of the
stress tensor bears the same information as the mechanical
free energy associated with the full stress tensor.
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